If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9c^2-14c=0
a = 9; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·9·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*9}=\frac{0}{18} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*9}=\frac{28}{18} =1+5/9 $
| 4^x-5=28 | | 14=6s+6 | | 7*x-2+4*x=42 | | y+4y=16 | | a-4a+10a=7 | | d)3 | | c) | | c) | | 3x+18=8x-17 | | 4*x-7=19 | | 4(2x-2)=-2(x-6) | | 2y’=6y+3 | | 4*x-7=19* | | 4x+1.5=60 | | (D^4+18D^2+81)=0y | | 10+8x3^x=42 | | 27-7=7y-27 | | 4x-7+8x=52 | | 4(4^2x)-17(4^x)-4=0 | | 4x-3x^2+0=0 | | 7x–4=x–16 | | 2x+31°.3x-26°=90° | | 1+2x=2–x^2 | | (5x)^2+8.5x=+20 | | (x+4)×(x+5)=x²-7 | | 2x+3+2x-1=0 | | (5x)2+8.5x=+20 | | 4x-5+2x+3=0 | | 5x=44+x | | 5=84+4x/8 | | x²=42 | | x3+17x2+16x=0 |